
Introduction to Docker
Containers

Contents

The Solution

The challenge

What is Docker and Why people care: Separation of Concerns

Why They Work?

Containers vs. VMs

Docker Components

Docker Architecture

Ecosystem

Use Cases

What Is the Problem?

The dependency hell

• pip : Python

• Gem: Ruby

• npm: Node.js

• Composer: PHP

Challenges

How to ensure services
interact consistently, avoid

dependency hell

How to migrate & scale
quickly, ensure
compatibility

How to avoid n X n
different configs

Running on any
available set of

physical resources
(public/private/

virtualized)

Assembled by
developers using

best available
services

Thin app on mobile,
tablet

2015

The Challenge

Static website

Web frontend

User DB

Queue Analytics DB

Background workers

API endpoint

nginx 1.5 + modsecurity + openssl + bootstrap 2

postgresql + pgv8 + v8

hadoop + hive + thrift + OpenJDK

Ruby + Rails + sass + Unicorn

Redis + redis-sentinel

Python 3.0 + celery + pyredis + libcurl + ffmpeg + libopencv
+ nodejs + phantomjs

Python 2.7 + Flask + pyredis + celery + psycopg + postgresql-
client

Development VM

QA server

Public Cloud

Disaster recovery

Contributor’s laptop

Production Servers

M
ul

tip
lic

ity
 o

f S
ta

ck
s

M
ul

tip
lic

ity
 o

f
ha

rd
w

ar
e

en
vi

ro
nm

en
ts

Production Cluster

Customer Data Center

Do se rvice s and apps
intera ct

appro priat ely?

Can I m
igra te

sm
oo thly a nd
quick ly?

Static website

Web frontend

Background workers

User DB

Analytics DB

Queue

Developm
ent VM

QA Server
Single
Prod

Server

Onsite
Cluster

Public
Cloud

Contribut
or’s

laptop

Customer
Servers

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

The Matrix From Hell

M
ul

tip
lic

ity
 o

f G
oo

ds
M

ul
tip

ili
ci

ty
 o

f
m

et
ho

ds
 fo

r
tr

an
sp

or
tin

g/
st

or
in

g

Do I w
orry abou t

how
 g oods inter act

(e.g. c offee bean s
next t o spi ces)

Can I trans port quick ly
and s m

oot hly
(e.g. f rom

 boat to tra in
to tru ck)

Cargo Transport Pre-
1960

The Solution

The Solution

An operating system–level virtualization
method for running multiple isolated Linux
systems (containers) on a single control host.

Linux Containers

Static website Web frontend User DB Queue Analytics DB

Developme
nt VM

QA server Public Cloud Contributor’s
laptop

M
ul

tip
lic

ity
 o

f S
ta

ck
s

M
ul

tip
lic

ity
 o

f
ha

rd
w

ar
e

en
vi

ro
nm

en
ts

Production
Cluster

Customer Data
Center

Do se rvices and apps
intera ct

appro priat ely?

Can I m
igra te

sm
oo thly a nd qu ickly

…that can be manipulated using
standard operations and run
consistently on virtually any
hardware platform

An engine that enables any
payload to be encapsulated
as a lightweight, portable,
self-sufficient container…

Docker is a shipping container system for
code

Static website

Web frontend

Background workers

User DB

Analytics DB

Queue

Developm
ent VM

QA Server
Single
Prod

Server

Onsite
Cluster

Public
Cloud

Contribut
or’s

laptop

Customer
Servers

Docker eliminates the matrix from Hell

 VMs vs. Containers

VMs

Containers

Bins/
Libs

App
A

Original App
(No OS to take
up space, resources,
or require restart)

App Δ

Bins/

App
A

Bins/
Libs

App
A’

Guest
OS

Bins/
Libs

Modified App

Copy on write
capabilities allow
us to only save the diffs
Between container A and
container
A’

VMs
Every app, every copy of an
app, and every slight modification
of the app requires a new virtual server

App
A

Guest
OS

Bins/
Libs

Copy of
App

No OS. Can
Share bins/libs

App
A

Guest
OS

Guest
OS

VMs Containers

Why are containers lightweight?

They’re different, not mutually exclusive

Container Engine Container
 Engine

WS 2016 LinuxContainer Engine

 VMs vs. Containers

VMs Containers

Security More isolated Less isolated

Size GBs MBs

Provision Mins Secs

OS More flexible Less flexible

What is Docker and Why
people care

• Docker is “a platform for developers and sysadmins to develop,
ship, and run applications”, based on containers.

• Docker is open-source, mainly created in Go and originally on top
of libvirt and LXC.

• Docker simplifies and standardizes the creation and management
of containers.

What is Docker?

• Build once, run anywhere

–A clean, safe, hygienic and portable runtime environment for your app.

–No worries about missing dependencies, packages and other pain points during subsequent
deployments.

–Run each app in its own isolated container, so you can run various versions of libraries and
other dependencies for each app without worrying.

–Automate testing, integration, packaging…anything you can script.

–Reduce/eliminate concerns about compatibility on different platforms, either your own or your
customers.

Why Developers Care

• Configure once, run anything

–Make the entire lifecycle more efficient, consistent, and repeatable.

– Increase the quality of code produced by developers.

–Eliminate inconsistencies between development, test, production, and customer environments.

–Support segregation of duties.

–Significantly improves the speed and reliability of continuous deployment and continuous integration systems.

–Because the containers are so lightweight, address significant performance, costs, deployment, and portability
issues normally associated with VMs.

Why Devops Cares?

 Why They Work?

Why it works - separation of concerns

Operation person Worries about what’s “outside” the container
• Logging
• Remote access
• Monitoring
• Network config

Developers Worries about what’s “inside” the container
• His code
• His Libraries
• His Package Manager
• His Apps
• His Data

•High Level—It’s a lightweight VM
o Own process space
o Own network interface
o Can run stuff as root
o Can have its own /sbin/init (different from

host)
o <<machine container>>

• Low Level—It’s chroot on steroids
o Can also not have its own /sbin/init
o Container=isolated processes
o Share kernel with host
o No device emulation (neither HVM

nor PV) from host)
o <<application container>>

•Run everywhere
o Regardless of kernel version (2.6.32+)
o Regardless of host distro
o Physical or virtual, cloud or not
o Container and host architecture must

match*

•Run anything
o If it can run on the host, it can run in

the container

WHY WHAT

More technical explanation

Consider a case where a company wants to test an application at scale and are using full-clone
virtual machines. Full-clone VMs in the best scenario take several minutes to boot, and most virtual
machine management platforms can only boot a handful machines simultaneously. Based on these
factors standing up 1,000 full-clone virtual machines could hours if not days. Meaning the test cycle
itself could take days if not weeks.

By contrast, the same application running inside of a Docker container can be started in less than
half a second. Standing up 1,000 containers becomes trivial. Test cycle times can be slashed from
days to hours. This can translate into measurable savings as well as increased agility.

 Docker Components

Docker Image
The basis of a Docker container. Represents a full application

Docker Container
The standard unit in which the application service resides and executes

Docker Engine
Creates, ships and runs Docker containers deployable on a physical or virtual, host
locally, in a datacenter or cloud service provider

Registry Service (Docker Hub or Docker Trusted Registry)
Cloud or server based storage and distribution service for your images

Docker components

• Read only template used to create containers
• Build by you or other docker users
• Stored in the docker hub or you local registry
• Every image starts from base image
• Include:

Application
Dependencies
Libraries
Binaries
Configuration files

Images

• Isolated application platform
• Containers everything needed to run you application
• Based on one or more images
• Docker containers launched from Docker image
• When Docker container runs, it adds a read-write layer on top of the image

Containers

• Docker Image is a class
• Docker Container is a instance of class

Image vs. Container

Docker will not only share the base image between containers, but it will
also share the same layers between different images.

• Dockerfile is instructions to build Docker image
– How to run commands
– Add files or directories
– Create environment variables
– What process to run when launching container

• Result from building Dockerfile is Docker image

Docker File

Dockerfile – Linux Example

• Instructions on how to
build a Docker image

• Looks very similar to
“native” commands

• Important to optimize your
Dockerfile

• Problems with standalone Docker Running a server cluster on a set of Docker
containers, on a single Docker host is vulnerable to single point of failure!

Docker Orchestration

• Tool for defining and running multi-container
• applications with Docker in a single file
• Fast, isolated development environments using Docker.
• Quick and easy to start.

Docker Compose

• Native Clustering System
• Clustering (management) for Docker.
• Manage multiple Docker daemons.
• Distribute workloads.

Docker Swarm

 Docker Architecture

Docker Architecture

Docker Architecture

Source
Code

Repository

Dockerfile
For

A

Docker Engine

Docker
Container

Image
Registry

Build

Docke r

Host 2 OS (Linux)

Container A

Container B

Container C

Container A

Push

Search Pull

Run

Host 1 OS (Linux)

What are the basics of the Docker system?

Docker Engine

Docker
Container

Image
Registry

Docker Engine

Push

Update

Bins/
Libs

App
A

App Δ

Bins/

Base
Container

Image

Host is now running A’’

Container
Mod A’’

App Δ

Bins/

Bins/
Libs

App
A

Bins/

Bins/
Libs

App
A’’

Host running A wants to upgrade to A’’.
Requests update. Gets only diffs

Container
Mod A’

Changes and Updates

 Use Cases !!

• Ted Dziuba on the Use of Docker for Continuous Integration at Ebay Now

• Sasha Klizhentas on use of Docker at Mailgun/Rackspace

• Sebastien Pahl on use of Docker at CloudFlare

•Cambridge HealthCare

•Red Hat Openshift and Docker

Use Cases

 Ecosystem

Ecosystem Support

Used By engineers at

Thank You For Listening

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Containers
	Folie 17
	They’re different, not mutually exclusive
	VMs vs. Containers
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51

